The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine

نویسندگان

  • Rui Zhu
  • Wen-Xin Niu
  • Zhi-Peng Wang
  • Xiao-Long Pei
  • Bin He
  • Zhi-Li Zeng
  • Li-Ming Cheng
چکیده

The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3-L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56-0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine

Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and f...

متن کامل

Fracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis

Objective: In this paper, finite element model of the L4 vertebra subjected to combination of compression and flexion loading in isotropic and anisotropic cases is investigated. Methods: In both cases, the vertebra is considered homogeneous. Also, the body of vertebra is divided to cancellous and cortical sections in anisotropic model, but the process is assumed isotropic such as isotropic mode...

متن کامل

Fracture Mechanics Analysis of Fourth Lumbar Vertebra in Method of Finite Element Analysis

Objective: In this paper, finite element model of the L4 vertebra subjected to combination of compression and flexion loading in isotropic and anisotropic cases is investigated. Methods: In both cases, the vertebra is considered homogeneous. Also, the body of vertebra is divided to cancellous and cortical sections in anisotropic model, but the process is assumed isotropic such as isotropic mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018